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Abstract—This work considers a blind detection problem in the
distributed multiple-input multiple-output (MIMO) networks, i.e.,
wireless sensor, co-operative, IoT networks, etc., without knowing the
encoding schemes of users, or sensors, and channel state information
(CSI) between users and fusion center (FC). Each user observes the
source phenomenon, encodes their observations, and transmit to
the FC using same time-frequency channel resource, i.e., coherent
multiple-access channel (MAC). Exploiting encoding and decision
vectors across users to be orthogonal, a novel maximum-likelihood
(ML) criteria-based constrained alternating least squares (CALS)
algorithm is proposed for the blind distributed detection problem in
the MIMO networks. Finally, simulation results illustrate the efficacy
of the proposed CALS detection algorithm.

Index Terms—Distributed detection, Alternating Least Squares.

I. INTRODUCTION

Evolving applications of the distributed detection [1] in
the communication networks, namely Wireless sensor networks
(WSN) [2], co-operative communication and IoT networks [3],
etc., have led to its comprehensive development. Such networks
have multiple sensors/ users that sense/ observe a phenomenon
to send their observations to the fusion center (FC), referred to
as reporting. Optimal detection at FC requires minimising the
impairments from the observation and reporting links. Hence,
an exact estimate of the CSI becomes essential, thereby increas-
ing communication overhead. Also, the required bandwidth for
reporting links increases with the users. Meanwhile, the recent
developments in IoT networks require solving distributed detec-
tion problems under low bandwidth, minimal cooperation and
overhead constraints, employing advanced techniques [4]. The
distributed detection problem has been extensively studied. This
paper focuses on the coherent MAC channel-based distributed de-
tection with minimal information at the FC. A similar multi-user
detection was given in [5], which linked the Canonical polyadic
decomposition (CPD)/ PARAFAC (Parallel Factorization) to the
blind detection in DS-CDMA. Orthogonality-constrained CPD
receiver was introduced in [6], which was later extended for
MIMO [7] to get constrained bi-linear ALS (CBALS) assuming
the CSI, an orthogonal matrix, and code matrix known at the FC.

This work proposes a detection algorithm to detect the source
phenomenon only knowing the observation and encoding statis-
tics. Hence, this work uses orthogonal codes, an orthogonal
symbol matrix, and flat-faded CSI over coherent MAC, with
all three parameters unknown to form a tri-linear least squares
problem to yield a blind distribute detection algorithm, namely the
constrained ALS (CALS), at the FC. The CALS detection algo-
rithm is useful for networks which require constrained bandwidth
and low latency. Constrained bandwidth, as the communication
channel for users is the same, i.e., coherent MAC and low latency,
as sending pilot symbols for channel estimation is not required.
The following section presents the system description.

II. SYSTEM MODEL

Consider a network with U users each having a transmit
antenna that observe the phenomenon at the source and send their

Fig. 1. A wireless user MIMO network observing the source phenomenon with
U single antenna users and a FC with R receive antennas.

observations to the FC, having R receive antennas, as illustrated
in Fig 1. The user u, 1 ≤ u ≤ U , sense the source phenomenon
and send the observation du ∈ RK×1 to the FC over the wireless
channel. The observation matrix D corresponding to U users can
be written as D = [d1, · · · ,du · · ·dU ] ∈ RK×U . The observation
vectors corresponding to the users are considered orthogonal, i.e.,
DTD = 2KIU , where IU denotes an identity matrix of size U ,
and DT denotes the transpose of matrix D. This is similar to
considering the data of each user to be encoded, for instance,
using pseudo-random noise (PN) codes. The phenomenon at
the source, denoted by p, can take binary values to indicate
the presence/ absence of the phenomenon corresponding to the
alternative/ null hypothesis. The user u encode and send their
observations to the FC over a wireless communication channel.
The use of coherent multiple-access channel (MAC) between U
users and R receive antennas of the FC drastically reduce the
bandwidth requirement, multiple-user communication overhead,
scheduling and synchronization problems. Let user u encodes the
observation vector du using the code su. The received signal
Yr ∈ CK×L at antenna r of the FC corresponding to the
transmission of U users sending their encoded observations be

Yr =
U∑

u=1

hr,udus
T
u +Nr, (1)

the channel coefficient matrix H contains the Rayleigh flat-faded
channel coefficients between the U users and the FC given as
H = [h1, · · · ,hu, · · · ,hU ] ∈ CR×U where hu denotes the
channel coefficient vector between user u and FC, and an element
hr,u of matrix H, denotes the channel coefficient between user u
and antenna r of the FC. Matrix Nr ∈ CK×L denotes white
Gaussian noise at antenna r of the FC. The element nk,t of
the noise matrix Nr follows a zero mean Gaussian density with
variance σ2

n, i.e., nk,t ∼ CN (0, σ2
n). The baseband system model

(1) can be equivalently written as

Yr =D Diag([hr,1, · · · , hr,U ])S
T +Nr (2)

=

U∑
u=1

du ◦ su ◦ hr,u +Nr, (3)

where Diag([hr,1, · · · , hr,U ]) in (2) is a diagonal matrix with
its principle diagonal elements from row r of channel matrix



H. The matrix S defines the coding scheme of U users as
S = [s1, · · · , su, · · · , sU ] ∈ RL×U , such that STS = LIU .
The operator ‘◦’ in (3) denotes the outer product, also called
as tensor product [8], defined between vectors a ∈ RJ1 and
b ∈ RJ2 as a ◦ b = abT ∈ RJ1×J2 . The third-order tensor
Y ∈ CK×L×R is obtained on stacking the Yr, given in (3), along
the receive antennas from forward to backward [9], denoted as
Y = [Y1|Y2| · · · |YR], is equivalently given as

Y =D ◦ S ◦H+N (4)

=

U∑
u=1

du ◦ su ◦ hu +N , (5)

where the additive complex Gaussian noise tensor N =
[N1|N2| · · ·NR] ∈ CK×L×R in (4) is obtained by stacking
the noise matrices Nr, 1 ≤ r ≤ R. The outer product of
the observation matrix D, encoding matrix S, and the channel
coefficient matrix H, also called the factor matrices of the tensor
Y . The decomposition of U summation terms, popularly known
as CANDECOMP/ PARAFAC (CP) decomposition (CPD) [10]
is given in (5). Hence, (5) represents a third order rank-U tensor
[11], which is decomposed into the sum of unique U rank-1
third order tensors, subject to the permutation and scaling/ sign
ambiguity, under mild Kruskal rank condition [11]. The Kruskal
rank-r of a matrix is the maximum number r such that every set
of r columns are independent. For the factor matrices D, S, and H,
of the tensor Y in (5), the uniqueness condition required [11] is
kD + kS + kH ≥ 2(U + 1). Where, kD, kS, and kH, denotes
the Kruskal rank of the three factor matrices and U denotes
the common dimension among the factor matrices. For full rank
factor matrices the above Kruskal rank condition is reduced [5]

min(K,U) + min(L,U) + min(R,U) ≥ 2(U + 1). (6)

Within the above stated challenges the next section presents novel
detector to identify the source phenomenon without knowing
codes of users and estimating their CSI in the network.

III. BLIND DISTRIBUTED DETECTOR

Let the matrices D̂, Ŝ, and Ĥ be the estimates of the factor
matrices, corresponding to D, S, and H, obtained from the
received tensor Y in (5). To detect the source phenomena, first
the estimate of the observation matrix D̂ from the received tensor
is obtained and then an low complexity test is applied on the
observation matrix. The optimal detection criterion for an equi-
probable source symbols is the maximum likelihood (ML), which
when applied to the system model in (5)/ (4) yields

L(D̂, Ŝ, Ĥ) = min
D,S,H

∥∥∥∥∥Y −
U∑

u=1

du ◦ su ◦ hu

∥∥∥∥∥
2

F

(7)

= min
D,S,H

∥Y −D ◦ S ◦H∥2F . (8)

where ∥ · ∥F denotes Frobenius norm. The cost function in the
above optimization framework (8) is nonlinear, in fact it is tri-
linear. The above cost function (8) can be equivalently written as
a set of three linear cost functions (9)-(11), presented next. The
linear cost functions are obtained on reshaping the third-order
tensor Y ∈ CK×L×R into matrices Y(1) ∈ CK×LR, Y(2) ∈
CL×RK , and Y(3) ∈ CR×KL called as mode-1, mode-2, and
mode-3 matricization [8]. For a third-order tensor Y , the mode-i
for i ∈ {1, 2, 3} matricization Y(i) is obtained by stacking one of
the three different types of matrix slices, called horizontal, lateral

and frontal, i.e., when the indices k, l, and r are fixed. Hence,
the tri-linear optimization framework for tensor Y in (8) when
using the matricized mode-i, i.e.,Y(i), for i ∈ {1, 2, 3}, can be
equivalently converted into three cost functions as

Ĥ = argmin
H

∥∥Y(3) −H(S⊙D)T
∥∥2
F
, (9)

Ŝ = argmin
S

∥∥Y(2) − S(H⊙D)T
∥∥2
F
, (10)

D̂ = argmin
D

∥∥Y(1) −D(H⊙ S)T
∥∥2
F
. (11)

where the operator ⊙ in (9)-(11) denotes the Khatri-Rao product
[8]. The cost functions in (9)-(11) are linear, tractable, and have
a closed form solution over the intractable tri-linear cost function
in (8). The closed form expression to linear cost function (9) is

Ĥ = Y(3)

(
(S⊙D)T

)†
, (12)

where the operators B† denotes Moore-Penrose pseudo-inverse
of matrix B. Exploiting the property of the optimization variable,
i.e., the code matrix as illustrated in Section II, the optimization
problems in (10) is equivalently reposed as a constrained mini-
mization problem, described as

Ŝ = argmin
S

∥∥Y(2) − S(H⊙D)T
∥∥2
F

subject to STS = LIU . (13)

Therefore using the orthogonality of the codes of different users,
the cost function in (13) can be solved to
∥Y(2) − S(H⊙D)T ∥2F
= Tr

{
YT

(2)Y(2) − (H⊙D)STY(2) −YT
(2)S(H⊙D)T

+ (H⊙D)LIU (H⊙D)T
}
. (14)

Now, the cost function in (14) is minimized with the constraint
STS = LIU . Further solving to make use of the constraint and
the identity Tr(ATB + BTA) = 2Tr(BTA) yields the optimal
code matrix Ŝ, given as

Ŝ =
1

2

(
Y(2)((H⊙D)T )† + L(YT

(2))
†(H⊙D)

)
. (15)

Similarly, optimization problem (11) when constrained by orthog-
onality of observation matrix, i.e., DTD = 2KIU , is reposed as

D̂ = argmin
D

∥∥Y(1) −D(H⊙ S)T
∥∥2
F

subject to DTD = 2KIU . (16)

Further, solving the constrained cost function leads to the ar-
gument minimization of Tr

{
YT

(1)Y(1) − (H ⊙ SDTY(1) −

YT
(1)D(H⊙S)T +2K(H⊙S)IU (H⊙S)T

}
, when solved along

similar lines as (14), results into the optimal D̂, derived as

D̂ =
1

2

(
Y(1)

(
(H⊙ S)T

)†
+ 2K

(
YT

(1)

)†
(H⊙ S)

)
. (17)

The optimization frameworks in (10) and (11) equivalently
reduced to the constrained minimization problem (13) and (16).
The closed form solutions to the optimization problems in (9),
(13), and (16) obtained corresponding to the mode-1, mode-2,
and mode-3 matricized tensor Y , are given in (12), (15) and (17),
respectively. To obtain the solution to the nonlinear, or the tri-
linear cost function (8), the set of linear cost functions in the



Algorithm 1 Blind Distributed Detection Algorithm

Input: Ŝ(0), Ĥ(0), D̂(0), and Y .
Output: Ď

Initialisation:
i = 1, Imax, Tolerance, and Error = 0

1: while i < Imax && Error > Tolerance do
2: Ĥ(i) = Y(3)

(
(Ŝ(i−1) ⊙ D̂(i−1))T

)†

3: Ŝ(i) = 1
2

(
Y(2)

((
Ĥ(i) ⊙ D̂(i−1)

)T)†

+L
(
YT

(2)

)†(
Ĥ(i) ⊙ D̂(i−1)

))
4: D̂(i) = 1

2

(
Y(1)

((
Ĥ(i) ⊙ Ŝ(i)

)T)†

+2K
(
YT

(1)

)†(
Ĥ(i) ⊙ Ŝ(i)

))
5: Error =

∥∥∥Y(1) − D̂(i)(Ĥ(i) ⊙ Ŝ(i))T
∥∥∥2
F

6: i = i+ 1
7: end while
8: return Ď← D̂(i)

optimization frameworks (9), (13), and (16) are alternately opti-
mized, optimized one-by-one in a sequence, to converge within
a tolerable error. The steps to obtain the observation matrix Ď is
illustrated in the Algorithm 1. The solution to the optimization
frameworks in (9), (13), and (16) at step i of the blind detection
algorithm are denoted as Ĥ(i), Ŝ(i), and D̂(i). Hence the matrices
Ĥ(0), Ŝ(0), and D̂(0) indicates the initialization of the respective
matrices at the start of the algorithm, and can be assumed
randomly. The decoded signal matrix Ď, obtained by via the
detection Algorithm 1, may have sign ambiguity [9]. Hence, a
test statistic which combines the observations to decode the source
phenomenon p from the decoded signal matrix Ď at the FC in
the coherent-MAC based MIMO network is

p̂ =
1

K
Tr

(
ĎHĎ

) H0

≶
H1

γ, (18)

where p̂ is the phenomenon detected at the FC corresponding to
the source phenomenon p, γ the decision threshold, and H0 and
H1 are the null and alternative hypothesis. Next section presents
the simulation results to validates the detection performance of
the proposed blind detector.

IV. SIMULATION RESULTS

Consider a network with U = 8 users, each with single
transmit antenna, and a FC with R = {4, 8} receive antennas.
The code length L = 16, observation block size K = 8,
binary phenomenon at the source, i.e., p ∈ {

√
2, 0} with equal

probability, the element hr,u of the channel coefficient matrix
H ∈ CR×U follow hr,u ∼ CN (0, 1). The initial conditions for
the CALS detection algorithm, i.e., the matrices Ŝ(0), D̂(0), and
Ĥ(0) are initialized with random values with Imax = 30, and
Tolerance to 10−4. Fig. 2 compares the bit error rate (BER)
versus the signal-to-noise (SNR) performances of the proposed
CALS detector in (18) for R = {4, 8} with the alternate least
squares (ALS) detection algorithm for R = {4, 8}, the energy
detector (ED) for R = 4 and the Genie aided zero forcing detector
ZF (Genie) for R = 4, i.e., ZF having perfect knowledge of
the code matrix S and channel matrix H at the receiver, serves
as a benchmark detector. The D from ALS and ZF (Genie) is

Fig. 2. BER vs. SNR simulation comparisons of the proposed CALS detection
algorithm with ALS, ED and perfect information based ZF (Genie).

used in (18) to get the phenomenon. A superior performance of
the proposed blind CALS detection algorithm is recorded over
the other blind detection counterparts namely the ED and ALS.
It is further noted that the performance of the proposed CALS
improves with an increase in the receive antennas at the FC.

V. CONCLUSION

This work considered a distributed detection problem where
each user observed the source phenomenon, encoded their deci-
sion and transmitted their information to the fusion centre over
the wireless coherent MAC. This work presented an ML criteria-
based constrained alternating least squares CALS algorithm that
exploited the decision vectors’ properties and encoding scheme to
present an algorithm for the blind distributed detection problem in
the MIMO networks. Finally, simulation comparisons illustrated
the superior performance of the proposed algorithm.
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